Познакомьтесь со старинной легендой об изобретении шахмат, которая напрямую связана с математикой.
Индийский правитель, желая отблагодарить мудреца − изобретателя шахмат, предложил ему самому выбрать себе награду. Мудрец попросил дать ему: за первое поле доски одно пшеничное зерно; за второе − два; за третье − четыре и так далее: за каждое следующее вдвое больше, чем за предыдущее.
Правитель был удивлён скромной просьбой мудреца. Однако вскоре придворные математики сообщили ему, что выполнить её невозможно. Оказалось, что это количество зерен фантастически велико: оно записывается числом, содержащим 20 цифр. А общая масса зерен составляет сотни миллиардов тонн.
Познакомьтесь с последовательностью чисел, "возникающей" согласно легенде на клетках шахматной доски. Для этого сначала изготовьте фрагмент шахматной доски: возьмите альбомный лист бумаги, расположите его горизонтально и начертите на нем первые три ряда клеток, сделав их как можно крупнее. Затем пронумеруйте клетки, двигаясь в каждом ряду слева направо, номер проставляйте в углу.
Впишите в каждую клетку, начиная с первой, число, обозначающее соответствующее количество зёрен, и ответьте на вопросы:
1) За какую по счету клетку количество зёрен впервые превысит 1 тыс.? 100 тыс.? 1 млн? Превысит ли количество зерен за 26−ю клетку 20 млн?
2) Сравните сумму зерен за первые две клетки с количеством зерен за 3−ю клетку; сумму зёрен за первые три клетки с количество зёрен за 4−ю клетку. Можете ли вы без подсчетов сказать, что больше: количество зерен за первые десять клеток или количество зерен за 11−ю клетку и на сколько?
3) Во сколько раз количество зерен на 9−й клетке больше числа зерен на 1−й клетке? на 10−й больше, чем на 2−й? на 11−й больше, чем на 3−й? Можете ли вы ответить на такой вопрос для любой пары "верхней" и "нижней" клеток, не выполняя вычислений?
11 клетка − 1024 зерна;
18 клетка − 131072 зерна;
21 клетка − 1048576 зерен.
1 + 2 = 3 зерна на первых двух клетках и 4 зерна на третьей клетке, поэтому:
1 + 2 < 4.
1 + 2 + 4 = 7 зерен на первых трёх клетках и 8 зерен на четвертой клетке, поэтому:
1 + 2 + 4 < 8.
Количество зерен на 11 клетке больше количества зерен на первых десяти клетках на одно зерно.
Количество зерен на 9−й клетке в 256 раз больше числа зерен на 1−й клетке.
Количество зерен на 10−й клетке в 256 раз больше числа зерен на 2−й клетке.
Количество зерен на 11−й клетке в 256 раз больше числа зерен на 3−й клетке.
На такой вопрос для любой пары "верхней" и "нижней" клеток, не выполняя вычислений можно ответить так: каждое "нижнее" и каждое "верхнее" число последующей пары удваивается, поэтому кратность между числами не измениться и будет равна 256.