ГДЗ Алгебра 8 класс Мерзляк, Полонский, Якир

ГДЗ Алгебра 8 класс Мерзляк, Полонский, Якир

авторы: , , .
издательство: "Вентана-Граф"

Раздел:

ГДЗ учебник по алгебре 8 класс Мерзляк, Полонский, Якир. §22. Упражнения. Номер №761

Упростите выражение:
1) 9 a 2 4 2 a 2 5 a + 2 a 2 3 a + 2 + a 1 1 2 a ;
2) b 4 b 3 b : ( b 1 2 b 2 + 3 b + 1 1 b 2 1 ) ;
3) ( c + 2 c 2 c 6 2 c c 2 6 c + 9 ) : с 2 + 3 c ( 2 c 6 ) 2 ;
4) ( 3 m 4 + 2 m m + 1 + 4 m 6 m 2 3 m 4 ) 4 m 16 2 m 3 .

reshalka.com

ГДЗ учебник по алгебре 8 класс Мерзляк, Полонский, Якир. §22. Упражнения. Номер №761

Решение 1

9 a 2 4 2 a 2 5 a + 2 a 2 3 a + 2 + a 1 1 2 a
2 a 2 5 a + 2 = 0
D = b 2 4 a c = ( 5 ) 2 4 2 2 = 25 16 = 9 > 0
a 1 = b + D 2 a = 5 + 9 2 2 = 5 + 3 4 = 8 4 = 2
a 2 = b D 2 a = 5 9 2 2 = 5 3 4 = 2 4 = 0 , 5
2 a 2 5 a + 2 = 2 ( a 2 ) ( a 0 , 5 ) = ( a 2 ) ( 2 a 1 )
тогда:
9 a 2 4 ( a 2 ) ( 2 a 1 ) a 2 3 a + 2 + a 1 1 2 a = ( 3 a 2 ) ( 3 a + 2 ) 2 a 1 1 3 a + 2 + a 1 1 2 a = 3 a 2 2 a 1 + a 1 1 2 a = 3 a 2 2 a 1 a 1 2 a 1 = 3 a 2 ( a 1 ) 2 a 1 = 3 a 2 a + 1 2 a 1 = 2 a 1 2 a 1 = 1

Решение 2

b 4 b 3 b : ( b 1 2 b 2 + 3 b + 1 1 b 2 1 )
2 b 2 + 3 b + 1 = 0
D = b 2 4 a c = 3 2 4 2 1 = 9 8 = 1 > 0
b 1 = b + D 2 a = 3 + 1 2 2 = 3 + 1 4 = 2 4 = 0 , 5
b 2 = b D 2 a = 3 1 2 2 = 3 1 4 = 4 4 = 1
2 b 2 + 3 b + 1 = 2 ( b ( 0 , 5 ) ) ( b ( 1 ) ) = 2 ( b + 0 , 5 ) ( b + 1 ) = ( 2 b + 1 ) ( b + 1 )
тогда:
b 4 b 3 b : ( b 1 ( 2 b + 1 ) ( b + 1 ) 1 b 2 1 ) = b 4 b ( b 2 1 ) : ( b 1 ( 2 b + 1 ) ( b + 1 ) 1 ( b 1 ) ( b + 1 ) ) = b 4 b ( b 2 1 ) : ( b 1 ) 2 ( 2 b + 1 ) ( 2 b + 1 ) ( b 1 ) ( b + 1 ) = b 4 b ( b 2 1 ) : b 2 2 b + 1 2 b 1 ( 2 b + 1 ) ( b 2 1 ) = b 4 b ( b 2 1 ) : b 2 4 b ( 2 b + 1 ) ( b 2 1 ) = b 4 b ( b 2 1 ) : b ( b 4 ) ( 2 b + 1 ) ( b 2 1 ) = b 4 b ( b 2 1 ) ( 2 b + 1 ) ( b 2 1 ) b ( b 4 ) = 1 b 2 b + 1 b = 2 b + 1 b 2

Решение 3

( c + 2 c 2 c 6 2 c c 2 6 c + 9 ) : с 2 + 3 c ( 2 c 6 ) 2
c 2 c 6 = 0
D = b 2 4 a c = ( 1 ) 2 4 1 ( 6 ) = 1 + 24 = 25 > 0
c 1 = b + D 2 a = 1 + 25 2 1 = 1 + 5 2 = 6 2 = 3
c 2 = b D 2 a = 1 25 2 1 = 1 5 2 = 4 2 = 2
c 2 c 6 = ( c 3 ) ( c ( 2 ) ) = ( c 3 ) ( c + 2 )
тогда:
( c + 2 ( c 3 ) ( c + 2 ) 2 c c 2 6 c + 9 ) : с 2 + 3 c ( 2 c 6 ) 2 = ( 1 c 3 2 c ( c 3 ) 2 ) : с 2 + 3 c ( 2 c 6 ) 2 = c 3 2 c ( c 3 ) 2 : c ( c + 3 ) ( 2 ( c 3 ) ) 2 = c 3 ( c 3 ) 2 4 ( c 3 ) 2 c ( c + 3 ) = ( c + 3 ) 1 4 c ( c + 3 ) = 4 c

Решение 4

( 3 m 4 + 2 m m + 1 + 4 m 6 m 2 3 m 4 ) 4 m 16 2 m 3
m 2 3 m 4 = 0
D = b 2 4 a c = ( 3 ) 2 4 1 ( 4 ) = 9 + 16 = 25 > 0
m 1 = b + D 2 a = 3 + 25 2 1 = 3 + 5 2 = 8 2 = 4
m 2 = b D 2 a = 3 25 2 1 = 3 5 2 = 2 2 = 1
m 2 3 m 4 = ( m 4 ) ( m ( 1 ) ) = ( m 4 ) ( m + 1 )
тогда:
( 3 m 4 + 2 m m + 1 + 4 m 6 ( m 4 ) ( m + 1 ) ) 4 m 16 2 m 3 = 3 ( m + 1 ) + 2 m ( m 4 ) + 4 m 6 ( m 4 ) ( m + 1 ) 4 ( m 4 ) 2 m 3 = 3 m + 3 + 2 m 2 8 m + 4 m 6 m + 1 4 2 m 3 = 2 m 2 m 3 m + 1 4 2 m 3
2 m 2 m 3 = 0
D = b 2 4 a c = ( 1 ) 2 4 2 ( 3 ) = 1 + 24 = 25 > 0
m 1 = b + D 2 a = 1 + 25 2 2 = 1 + 5 4 = 6 4 = 1 , 5
m 2 = b D 2 a = 1 25 2 2 = 1 5 4 = 4 4 = 1
2 m 2 m 3 = 2 ( m 1 , 5 ) ( m ( 1 ) ) = ( 2 m 3 ) ( m + 1 )
тогда:
( 2 m 3 ) ( m + 1 ) m + 1 4 2 m 3 = 4